If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-59=0
a = 2; b = 12; c = -59;
Δ = b2-4ac
Δ = 122-4·2·(-59)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{154}}{2*2}=\frac{-12-2\sqrt{154}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{154}}{2*2}=\frac{-12+2\sqrt{154}}{4} $
| 4n+41=3 | | 9(x+7)=9x=63 | | 9(+1)=9x-7 | | F(t)=2t-4 | | 4+r=20=6-r=2 | | 15-x=47 | | 17=5k–2 | | 14+x-11-x+x-3=11 | | S+30=3s | | 8t2+15t–2=0 | | x^2+8x-97=-3 | | 2/7n+1/10=1/2(n+4) | | 6y+2=32 | | 2(7x-5)-2x=-82 | | 2t+10=17t-50 | | f(4)=3/4×4+5 | | (x+6)/6=9/5 | | 4r=20=6r=2 | | 6x+(5x-9)=90 | | 1/5x+5=3/2x | | f(4)=3/44+5 | | 12z+5=4z+8 | | q9+10=11 | | X+(3*x)+(x+6)+(x-4)*2=40 | | 2w^2+w=68 | | 21x^2=77x-28 | | n^2-14n+51=0 | | 5x+15=9x-108 | | 5x+1=-10+6x | | 1=2u–1 | | -7x-6=-55 | | |12x-7|=15 |